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Abstract. A well known description of superradiance from pointlike collections of many atoms involves the
dissipative motion of a large spin. The pertinent “superradiance master equation” allows for a formally
exact solution which we subject to a semiclassical evaluation. The clue is a saddle-point approximation
for an inverse Laplace transform. All previous approximate treatments, disparate as they may appear, are
encompassed in our systematic formulation. A byproduct is a hitherto unknown rigorous relation between
coherences and probabilities. Our results allow for generalizations to spin dynamics with chaos in the
classical limit.

PACS. 42.50.Fx Cooperative phenomena; superradiance and superfluorescence – 03.65.Sq Semiclassical
theories and applications

1 Introduction

Dissipative motion of large spins was first seen in exper-
iments on superradiance or superfluorescence (For exten-
sive reviews see Refs. [1,2]), after being proposed a lot
earlier by Dicke [3]. The so called superradiance master
equation proposed in [4,5] has since become a standard
tool for describing the collective dynamics of identical su-
perradiating atoms in the small-sample limit. Formally
speaking, it provides a quantum treatment of a large spin
with conserved square, J2 = j(j + 1), with the quantum
number j capable of taking on positive half integer or
integer values up to half the number of atoms N . The
origin of such an angular momentum lies in the familiar
formal equivalence of a single two-level atom to a spin- 1

2 .
In (semi)classical parlance, the spin in question is called
the Bloch vector whose z-component measures the energy
stored in atomic excitation while the transverse compo-
nents are related to the dipole element responsible for the
atomic transition. More or less everything worth knowing
about the superradiance master equation in relation to the
numerous superfluorescence experiments has been worked
out more than a decade ago.

When we pick up the thread now our motivation is
not to better explain anything previously observed, but
rather the expectation of new experiments involving dis-
sipative motion of large spins constituted by many iden-
tical two-level atoms, albeit motions that would have a
chaotic classical limit and display quantum manifestations
of chaos when the spin quantum number j is of the or-
der of several hundreds or thousands. When beginning to
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look into such dynamics [6] we found, somewhat to our
surprise, that previous treatments of the superradiance
master equation were so directly geared to the specifics of
superradiant pulses as transient events that new questions
do indeed require some new theoretical work. In particu-
lar, the semiclassical limit of large j deserves systematic
attention and turns out to harbor one or the other surprise
which we begin to uncover in the present paper.

The large-j limit can be approached through the rig-
orous solution of the master equation which was known
from the very beginning [4], and we shall actually follow
that path here. Strangely enough, up to now that rigor-
ous solution has mostly been looked upon as a curiosity
rather than a useful starting point of analytic work; even
numerical evaluations were disfavored against routines for
solving coupled differential equations for density matrix
elements in some representation.

We propose to show that the large-j limit is very
conveniently accessed by subjecting the rigorous Laplace
transformed density matrix to a saddle-point evaluation
of the inverse Laplace transformation. More specifically,
we carry out this program in the eigenrepresentation of
Jz and J2 for the density matrix 〈jm|ρ(t)|jm′〉 and the
propagator relating that density matrix to its initial form
〈jm|ρ(0)|jm′〉. The saddle-point result turns out reliable
provided that not only j is large but also the differ-
ence between the initial and final eigenvalues of Jz, i.e.
|m −m′| � 1. That restriction unfortunately affects the
propagator at early times while most of the probability
still resides in levels m close to the initial m′. We therefore
establish an independent early-time propagator, show its
agreement with the saddle-point version in a certain time
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span and finally combine the two to an explicit expression
of uniform validity.

Our uniform propagator turns out to systematically
encompass previous asymptotic results. Among these is,
trivially, the fully classical behavior arising in the limit
j → ∞ as long as the initial state is not too close to
the state of full initial excitation m = j which in the
classical limit is an infinitly long-lived state of marginal
equilibrium. The classical behavior in question is that
of an overdamped pendulum. The pertinent equation of
motion for the so-called Bloch angle θ (defined through
cos θ = limj→∞〈Jz(τ)〉/j) reads, with τ denoting a suit-

ably scaled time,
d

dτ
θ = sin θ; the well known solution

is

tan
θ(τ)

2
= eτ tan

θ(0)

2
· (1.1)

Furthermore, we recover the random-jitter picture first
suggested in [7,8] and the ensuing distribution of delay
times as well as the scaling results for time dependent ex-
pectation values of products of the observables Jx, Jy, Jz
obtained by somewhat hit-and-run methods in [9,10].

An interesting byproduct of our investigation is an ex-
act relation between diagonal and offdiagonal elements of
the density matrix in the jm-basis, which to the best of
our knowledge has previously gone unnoticed. One may
thus confine all work towards solving the master equa-
tion to the probabilities 〈jm|ρ(t)|jm〉 and eventually ob-
tain the coherences 〈jm|ρ(t)|jm′〉 through the relation in
question.

A subsequent paper will deal with the large-j limit
with the WKB method.

2 Master equation and dissipative propagator

The two states of an atom resonantly coupled to a mode of
the electromagnetic field may be thought of as the states of
a spin- 1

2 , and all observables of the effective two-level atom
can be represented as linear combinations of unity and the
three spin operators Jx, Jy, Jz. In particular, the energy
may be associated with Jz and the other two spin opera-
tors with the atomic dipole moment. If N such atoms, all
identical, couple collectively to the electric field E one has

an interaction Hamiltonian∝ −JxE where Jx =
∑N
µ=1 J

µ
x

is the sum of all single-atom contributions; similarly, one

has a global atomic energy ∝ Jz =
∑N
µ=1 J

µ
z . The collec-

tive spin operators obey the familiar angular-momentum
commutation relations [Jx, Jy] = iJz etc. The Hilbert
space for the N atoms is 2N dimensional but falls into sub-
spaces not connected by the collective observables Ji; each
subspace has fixed J2 = j(j+ 1) with nonnegative integer
or half-integer j not exceeding N/2. The (2j+1) states in
the jth subspace are conveniently taken as the eigenstates
|jm〉 of Jz with eigenvalues m = −j,−j+1,−j+2, . . . , j.
The highest energy may be associated with m = j where-
upon the ground state has m = −j. In particular, the

subspace with j =
N

2
consists of N + 1 states which are

all totally symmetric in all atoms; that space may be sin-
gled out experimentally by preparing all atoms in their
lower state.

In the superradiance experiments of reference [11] a
single mode of the electromagnetic field within a resonator
was coupled to N two-level atoms such that the dynamics
was that of the so-called Jaynes-Cummings model, with
dissipation included to account for field losses from the
resonator. In the limit of overdamped Rabi oscillations
the field mode can be eliminated adiabatically. A master
equation for the atomic density operator thus results [4,
5] of which we shall consider the low-temperature version,
thus forbidding the atoms to pick up thermal photons from
the environment,

d

dt
ρ̂ = κ{[J−, ρ̂J+] + [J−ρ̂, J+]} ; (2.1)

here J± = Jx ± iJy are the familiar raising and lowering
operators and κ measures the rate of photon loss from the
cavity.

In the basis set |jm〉 we obtain from (2.1) a set of
equations for the elements ρm1m2 = 〈jm1|ρ̂|jm2〉 of the
density matrix,

ρ̇m1m2 =2κ

[
√
gm1+1gm2+1ρm1+1,m2+1

−
gm1 + gm2

2
ρm1,m2

]
(2.2)

in which gm denotes the “rate function”

gm = j(j + 1)−m(m− 1). (2.3)

The diagonal element ρmm of the density matrix gives the
probability to find the system of atoms in the state |jm〉;
the elements ρm1m2 with m1 −m2 6= 0 will be referred to
as coherences. It is worth noting a certain unidirectional-
ity of the flow of probability and coherence, downwards
the m-ladder, the physical origin of which is of course the
low-temperature limit mentioned above. A further impor-
tant feature of the system (2.2) is that the density matrix
elements with different m1−m2 evolve independently. To
make that independence manifest it is convenient to in-
troduce the quantum numbers

m =
m1 +m2

2
, k =

m1 −m2

2
(2.4)

which can be simultaneously either integer or half-integer.
Accounting for

gm1 + gm2

2
= gm − k

2 (2.5)

and changing the notation ρm1m2 for the density matrix
element to ρkm we can rewrite the master equation as

dρkm
dt

= 2κ
[√
gm+k+1gm−k+1ρ

k
m+1 − (gm − k

2) ρkm
]
.

(2.6)
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It is now indeed obvious that the “skewness” k enters only
as a parameter.

The linear relation between the density matrices at the
current time and at the initial moment,

ρkm(t) =
∑
n

Dk
mn(t)ρkn(0) , (2.7)

defines the k-dependent matrix Dk
mn(t) which will be

called the dissipative propagator. Its column correspond-
ing to a certain fixed n can be regarded as the solution
of the master equation (2.6) corresponding to the initial
condition ρkm(0) = δmn. Due to the unidirectionality of the
master equation it is obvious that Dk

mn = 0 if m > n. We
shall drop the superscript k in the case k = 0, i.e. when the
diagonal elements of the density matrix are considered.

3 Saddle-point asymptotics of the dissipative
propagator

There have been a number of successful attempts to treat
the large-j limit of the superradiance problem [1,4,7–10].
These were concerned with the solution of the master
equation for certain particular cases or directly aimed at
specific average properties of the process. The purpose of
the present paper is to establish uniform asymptotics of
the dissipative propagator without such restrictions. We
use the exact solution of the master equation in the form
of the Laplace integral which was obtained long ago [4]
but remained largely unexplored. Previously established
results for the propagator, the distribution of delay times,
and time dependent expectation values follow from our
uniform asymptotic propagator.

Before embarking on our proposed asymptotic adven-
ture it is convenient to adopt the parameter√

j(j + 1) ≈ j +
1

2
≡ J (3.1)

as a measure of the “size” of the angular momentum; the
semiclassical formulae to be established take a prettier
form if we use J rather than j.

3.1 Laplace representation of the exact propagator

Following [4] let us recall the Laplace integral represen-
tation of the propagator. Defining the Laplace image as
Dkmn(z) =

∫∞
0
e−ztDk

mn(t)dt we turn our master equation
into a recursion relation with the easily found solution

Dkmn(z) =
1

2κ
√
gm−kgm+k

n∏
l=m

√
gl−kgl+k

z

2κ
+ gl − k

2
· (3.2)

To get the dissipative propagator itself we invert the
Laplace transform. Introducing a scaled time

τ = 2κJt (3.3)

and the quantity

Qmn =
n∏

l=m+1

gl =
(j + n)!(j −m)!

(j +m)!(j − n)!
(3.4)

we bring our propagator to the form

Dk
mn(τ) =

√
Qm−k,n−kQm+k,n+k

2πi

×

∫ b+i∞

b−i∞
dv eτv/J

n∏
l=m

1

v + gl − k2
, (3.5)

where b should be larger than the largest pole in the de-
nominator.

3.2 Relation between densities and coherences

An unexpected new result of the representation (3.5) is an
identity connecting the propagators for the diagonal and
for the off-diagonal elements of the density matrix,

Dk
mn(τ) = Dmn(τ)

√
Qm−k,n−kQm+k,n+k

Qmn
ek

2τ/J . (3.6)

For the proof it is sufficient to shift the integration vari-
able in (3.5) to v̄ = v − k2. Alternatively, the connection
between the diagonal and off-diagonal density matrix el-
ements can be checked by entering the master equation
with the ansatz

ρkm =
(j +m)!

(j −m)!

√
(j −m− k)!(j −m+ k)!√
(j +m− k)!(j +m+ k)!

e2κk2tρ̃m(t) ;

(3.7)

the new unknowns ρ̃m(t) then turn out to evolve in time
like probabilities, i.e. to obey (2.6) for k = 0.

The positive sign of the exponents in these relations be-
tween probabilities and coherences is not a misprint: the
coherence ρkm = ρm+k,m−k does decay more slowly than
the density ρm = ρm,m. Moreover, there is no conflict with
the nowadays popular phenomenon of accelerated deco-
herence [12,13,15]: Quantum dissipative processes do im-
ply much larger decay rates for coherences than for prob-
abilities but only so with respect to certain states which
are distinguished by the process itself; for the dissipative
process studied here such distinguished states are, for in-
stance, coherent angular-momentum states [14,10] but not
the states |jm〉.

A simple illustration of the statement just made may
be helpful, even if it amounts to sidestepping to another
dissipative process for an angular momentum, the one
described by the master equation [6] ρ̇ = κ{[Jz, ρJz ] +
[Jzρ, Jz]}. In that case the eigenstates |jm〉 of Jz are the
distinguished ones as is obvious from ρ̇km = −4κk2ρkm:
The probabilities ρ0

m are all conserved while the coher-
ences have decay rates growing quadratically with the
skewness k.
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3.3 Saddle-point evaluation of the Laplace integral

The relation (3.6) between probabilities and coherences
clearly allows us to confine the remaining investigation to
the case k = 0, i.e. to the propagator of the densities. Our
goal is to do the integral in the exact formula (3.5) in the
limit of large J . To begin with, let us rewrite that formula
for k = 0 as

Dmn(τ) =
Qmn

2πi

∫ b+i∞

b−i∞
eZmn(v,τ) dv (3.8)

with the exponent

Zmn(v, τ) = τv/J −
n∑

l=m

ln(v + gl) . (3.9)

Suppose now that n − m � 1. Then since the number
of terms in the sum Z is proportional to n −m its value
is generally also large, which fact suggests a saddle-point
approximation. The stationary points of the exponent are
given by the solutions for v of

Z
′

mn = τ/J −
n∑

l=m

1

v + gl
= 0 . (3.10)

All roots of this saddle-point equation are real as is im-
mediately seen by putting v = x+ iy and separating the
imaginary part. We further note that to the right of the
largest pole vmax = max

m≤l≤n{−gl} of the integrand in (3.5)
the sum in (3.10) decreases monotonically from +∞ to 0
as v grows from vmax to infinity. Therefore we have one
and only one root v0 in that domain. Its position depends
on the time τ : When τ goes to zero v0 tends to infinity;
conversely, for τ →∞ the saddle point v0 approaches the
pole at vmax.

The second derivative with respect to v of the expo-
nent,

Z
′′

mn =
n∑
m

1

[v + gl]2
, (3.11)

is positive for real v which means that the direction of
steepest descent from the saddle is parallel to the imagi-
nary axis. The saddle-point approximation for the integral
(3.8) thus gives

Dmn ≈
Qmn√
2πZ ′′mn

eZmn(v0,τ) . (3.12)

3.4 Euler-Maclaurin estimates for the sums

To render the expression (3.12) useful, we must evaluate

the three sums in Zmn, Z
′

mn, Z
′′

mn. The familiar Euler-
Maclaurin summation formula

∑n
m f(k) ≈

∫ n
m
f(x)dx +

(f(m) + f(n))/2 comes to mind first but is not immedi-
ately suitable for our purpose. We rather employ a mod-
ified version which involves nothing but an integral; to

compensate for the absence of the extra boundary terms
the integration interval is extended,

n∑
m

f(k) ≈

∫ n+1/2

m−1/2

f(x)dx. (3.13)

The accuracy of both summation rules is the same for
smooth summands f(k).

In applying (3.13) to the sum in the saddle-point equa-
tion we rewrite the rate function as gl = J2 − (l − 1/2)2,
introduce the rescaled variables

µ =
m− 1

J
, ν =

n

J
, a =

√
v0 + J2

J
(3.14)

and obtain
n∑

l=m

1

v + gl
≈

∫ n

m−1

dx

v0 + J2 − x2

=
1

2Ja
ln

[
(a+ ν)(a− µ)

(a− ν)(a+ µ)

]
. (3.15)

The saddle-point condition (3.10) thus takes the form

τ =
1

2a
ln

(a+ ν) (a− µ)

(a− ν) (a+ µ)
. (3.16)

It determines a as a function of ν, µ, and τ . As already
explained above, the single root of interest is positive and
larger than the larger of |µ|, |ν|.

Similarly proceeding with the sums in Z
′′

mn and Zmn
we find

J3Z
′′

mn =
1

2a2

(
τ +

ν

a2 − ν2
−

µ

a2 − µ2

)∣∣∣∣
a=a(µ,ν,τ)

≡ Ξ(µ, ν, τ) , (3.17)

Zmn(v, τ) = J
[
τ(a2 − 1)− 2(ν − µ) lnJ

+ 2(ν − µ)− σ(a, µ, ν)] (3.18)

with the auxiliary function

σ(a, µ, ν) ≡ (ν + a) ln(ν + a)− (µ+ a) ln(µ+ a)

− (a− ν) ln(a− ν) + (a− µ) ln(a− µ) .

(3.19)

We should comment on the slight asymmetry in the def-
initions of the macroscopic variables µ and ν in (3.14).
The use of (m− 1)/J instead of m/J as the macroscopic
variable µ is formally related to our extension by 1 of the
integration interval in the summation formula (3.13) and
has the benefit of preventing the small parameter 1/J from
appearing explicitly in the saddle-point equation (3.16).

4 Uniform asymptotics of the propagator

We came to our saddle-point approximation assuming that
the number of terms in the sum Zmn equal to n − m is
large. It is not surprising therefore that the approximation
(3.12) loses its accuracy when n−m is of the order unity
or zero; that situation prevails, e.g., for small times τ ; an
alternative approximation is then desirable and will be
constructed presently.
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4.1 Small-time approximation

To explain the essence of the new approximation let us
give a simple example. Consider the Laplace image func-
tion with two simple poles V(z) = (z−c−d)−1(z−c+d)−1

and its original function V (t) = ect d−1 sinh td. As long as
td� 1 the hyperbolic sine can be replaced by its argument
such that V (t) ≈ tect. We have thus in effect replaced
the two close by poles of the Laplace image by a single
second-order pole; that replacement is obviously justified
for sufficiently small times.

To employ this observation for the Laplace represen-
tation of the propagator (3.5) we introduce the new inte-
gration variable x = τv/J and obtain

Dmn(τ) = Qnm

( τ
J

)n−m 1

2πi

∫ b+i∞

b−i∞

exdx∏n
l=m[x+ glτ/J ]

·

(4.1)

The length of the interval on which the poles of the inte-
grand now lie is proportional to τ ,

|gm − gn|
τ

J
=
|m+ n− 1|

J
(n−m)τ . (4.2)

If that length is much smaller than unity the poles of the
integrand of (4.1) are nearly degenerate, and that proxim-
ity enables us to replace the product in the denominator
by the (n −m)-th power of the average factor x + ḡτ/J

with ḡ ≡ gm+n
2

= J2−

(
n+m− 1

2

)2

. The integral is then

easily calculated and yields the small-time asymptotics of
the dissipative propagator,

Dmn(τ) =
Qmn

(n−m)!

( τ
J

)n−m
× exp

{
−
τ

J

[
J2 −

(
n+m− 1

2

)2
]}

. (4.3)

Unlike the saddle-point approximation, the foregoing ex-
pression is fully explicit. We shall keep referring to it as
the small-time approximant although the underlying small
parameter is the combination (4.2) of both τ and the quan-
tum numbers m,n.

4.2 Matching the two approximations

The saddle-point and the small-time approximations for
the propagator practically coincide for an intermediate
range of arguments. Let us assume l = n − m + 1 � 1
but on the other hand ζ ≡ l/J � 1 ( say, l ∼

√
J). The

solution a(τ, µ, ν) of the saddle-point equation (3.16) can
then be found by expanding in powers of ζ,

a2 = ν2 +
ζ

τ
− ζν +O(ζ2) . (4.4)

The exponent (3.18) in the saddle-point formula then sim-
plifies according to τ(a2 − 1) ≈ ζ + τ

[
(ν − ζ/2)2 − 1

]

and σ(a, µ, ν) ≈ ζ
(

ln ζ
τ + 2

)
while the prefactor becomes

Ξ ≈ τ2/ζ. Collecting these pieces in (3.12) we obtain

Dmn =
Qmn

√
l

√
2π

(e
l

)l ( τ
J

)l−1

e
−
τ
J

[
J2−

(
n−

l
2

)2]∣∣∣∣∣
l=n−m+1

.

(4.5)

This in turn is the small-time approximation (4.3) pro-
vided we there replace the factorial (n−m)! = (l−1)! à la

Stirling, (l − 1)! ≈
√

2π
l

(
l
e

)l
. Hence the saddle-point and

small-time approximations agree for 1� l � J .

4.3 Uniform approximation

The two approximations under discussion can be merged
into a single one which generally behaves like the saddle-
point formula (3.12) but preserves its accuracy even when
m is close to n and/or the time τ is small. We just have
to divide the saddle-point result (3.12) by the ratio of the
factorial (n−m)! to its Stirling approximant. If n−m is
large that ratio is unity but otherwise the correction re-
places the saddle-point version with the small-time prop-
agator (4.3). We thus obtain the principal result of our
paper for the density propagator in the large-j limit,

Dmn =
QmnJ

3/2

(l − 1)!
√
l Ξ

(
le

J2

)l
eJ[τ(a2−1)−σ(a,µ,ν)], (4.6)

l = n−m+1, µ = (m−1)/J, ν = n/J, a = a(µ, ν, τ) .

It is valid in a wide range of quantum numbers and prop-
agation times and thus merits the name uniformly asymp-
totic propagator. The error is of order 1/J2 except for the
not very interesting late times when the bulk of the proba-
bility has settled in the lowest level; that latter restriction
for τ arises due to the close encounter of saddle and pole
mentioned in Section 3.3.

We have checked that (4.6) provides an efficient tool
to numerically calculate the dissipative propagator; if j is
large its accuracy becomes comparable or even superior to
that of the numerical integration of the master equation.
The only inconvenience is the necessity to determine the
saddle-point parameter a = a(µ, ν, τ) by solving (3.16)
which generally has to be done numerically.

5 Special cases

We proceed to considering situations in which the uniform
approximation simplifies. The strategy invariably is to ap-
proximate factorials of large numbers à la Stirling. Some
cases even allow for an analytical solution for the saddle-
point parameter a whereupon fully explicit formulas for
the propagator arise. Some well-known results of superra-
diance theory are thus recovered and revealed as special
cases of the uniform approximation.
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5.1 Semiclassical approximation

The uniformly asymptotic propagator (4.6) depends on
the quantum numbers m,n, j in two ways. First there is
the factorial dependence which reflects the discrete charac-
ter of the representation. Second, there is the dependence
on the arguments µ, ν which can be regarded as the clas-
sical counterparts of m,n scaled with respect to the total
angular momentum; they tend to continuous variables in
the classical limit.

Suppose we are not interested in effects tied up with
the discreteness of quantum levels and want to obtain
a smooth function of the macroscopic coordinates µ, ν
only. This is easily achieved by replacing the factorials
(n − m)!, (j ± n)!, (j ± m)! by their Stirling estimates.
While such a replacement would be unacceptably inaccu-
rate if the arguments m,n approached ±j (“the poles” of
the Bloch sphere in classical parlance) or each other, it
otherwise reliably yields

Dmn(τ) =
1

(1− µ2)
√

2πJΞ
eJΦ(µ,ν,τ), (5.1)

Φ(µ, ν, τ) = τ(a2 − 1)− σ(a, µ, ν) + σ(1, µ, ν) . (5.2)

We here speak of the semiclassical approximation because
of the implied assumption that all the quantum numbers
and their relevant combinations are large. As a function
of µ at fixed ν and τ the semiclassical propagator displays
a single maximum located according to

∂Φ

∂µ
= ln

a2 − µ2

1− µ2
= 0 , (5.3)

i.e. a = 1. The saddle-point equation (3.16) then yields
the most probable value of µ = Jz/J at time τ related to
the initial value ν through

τ =
1

2
ln

(1 + ν) (1− µ)

(1− ν) (1 + µ)
· (5.4)

Written in terms of the polar angle of the Bloch vector
cosΘ = µ, cosΘ0 = ν the last equation becomes the
solution of the equation of motion of the overdamped
pendulum (1.1) mentioned in the Introduction. Indeed,
the classical picture of the atomic dynamics in superra-
diance is that of the Bloch vector creeping from what-
ever initial orientation θ0 towards the equilibrium θ = π
like an overdamped pendulum with the azimutal angle
φ = arctan(Jx/Jy) fixed. None too surprisingly, the maxi-
mum of the distribution Dmn with respect to m occurs at
the point m = m(n, τ) predicted by the classical motion
of the Bloch vector.

As it stands in (5.1) the semiclassical propagator cor-
rectly describes a broadening of the initially sharp distri-
bution Dmn(τ = 0) = δmn to one with a width ∝

√
J .

For many applications that width is negligible such that
we may replace the propagator by

lim
J→∞

JDmn(τ) = δ(µ− µ(τ, ν)) (5.5)

where µ(τ, ν) is the classical trajectory according to (5.4).
For instance, expectation values like 〈Js+J

k
z J

s
−〉 can be cal-

culated to leading order in J with the help of the foregoing
sharp version of the semiclassical propagator through the
integrals

〈Js+J
k
z J

s
−〉 = J2s+k

∫ 1

−1

δ(µ− µ(τ, ν))(1− µ2)sµkdµ

= (1− µ(τ, ν)2)sµ(τ, ν)k , (5.6)

provided, it is well to repeat, the initial point n = Jν is
well removed from the most highly excited ones, j−n� 1.
No quantum effects at all survive in that expression; they
would only show up as small standard deviations at most
of order 1/

√
J if the small width of the propagator (5.1)

were kept.

5.2 Early stage of superradiant decay
of highest-energy initial states

We now take up the previously best studied aspect of su-
perradiance, the decay of the most highly excited atomic
initial states, j − n � j. We begin by studying the early
stage, i.e. small τ , while the bulk of the probability still
resides with highly excited states. This means that only
those propagator elements are significantly different from
zero for which the final quantum number m is also close
to j, or j −m� j.

We are so led to examine our uniform approximation
when the macroscopic variables ν and µ are close to unity.
Expanding the solution of the saddle-point equation (3.16)
in powers of 1− ν, 1− µ we find the function a(µ, ν, τ) in
terms of the nonlinearly rescaled time

ξ = e−2τ (5.7)

as a ≈
ν − µξ

1− ξ
. From here it is easy to establish the ingre-

dients of the uniform propagator (4.6),

(a2 − 1)τ − σ ≈ (1− ν) ln ξ

+ (ν − µ) [ln(1 − ξ)− ln(ν − µ)− ln 2e] ,

Ξ ≈
sinh2 τ

ν − µ
, Qmn ≈ (2J)n−m

(j −m)!

(j − n)!
, (5.8)

which bring the propagator to the limiting form

Dmn(τ) =

(
j −m
j − n

)
ξj−n+1(1− ξ)n−m , (5.9)

known as the linear approximation describing the early
stages of the superradiant process [1].

5.3 Bright stage of superradiant decay of highly
excited initial states

Suppose now that the initial level is close to but the fi-
nal quantum number m far away from j such that j −m
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is of the order of j. For simplicity we shall also assume
that m is not close to −j. In classical terms, we take
the Bloch vector as initially pointing almost to the north
pole, but we wait long enough for it to develop a substan-
tial component transverse to the polar orientation, i.e. a
strong dipole moment; by excluding the late stages of near
south polar orientation we confine ourselves to the phase
of brightest radiation which actually gave rise to the term
“super”radiance.

Under the limitations onm,n just specified the saddle-
point equation (3.16) can still be solved analytically. The
important fact is that the function a takes on values close
to unity. More accurately, it can be shown that the differ-
ence 1− a is of the same order of magnitude as

δν ≡ 1− ν , (5.10)

the deviation of the initial classical coordinate from unity.
It will be convenient to introduce the quantum time shift

τ ′ = τ − τclass(µ, ν) , (5.11)

where τclass(µ, ν) denotes the classical time of travel from
ν to µ given by (5.4); in the situation under study it is

τclass ≈
1

2
ln

2

δν
−

1

2
ln

1 + µ

1− µ
· (5.12)

We can now write a as

a ≈ 1−
(

1− e−2τ ′
)
δν . (5.13)

By similarly evaluating the other ingredients in the propa-
gator (4.6) to leading order in δν and in addition replacing
all factorials but (j − n)! = l! by their Stirling estimates
we come to

Dmn =
2

J (1− µ2)

(
l + 1

2

)l+1

l !

× exp

[
−2(l+ 1)τ ′ −

(
l +

1

2

)
e−2τ ′

]
l=j−n

.

(5.14)

To connect with wellknown results we ban the quantum
time shift τ ′ by substituting (5.11), (5.12) and introduce
the rescaled variables

z = 2Je−2τ , x = z
1− µ

1 + µ
· (5.15)

The propagator thus assumes the equivalent form

Dmn(τ) =
2

J (1− µ2)

xl+1e−x

l!

∣∣∣∣
l=j−n, µ=(m−1)/J

. (5.16)

The special case of full initial excitation, l = j − n =
0, yields a distribution first derived by De Giorgio and
Ghielmetti [7,8].

Contact with several previous treatments of superra-
diance is made by considering the bright-stage propagator

(5.16) for high initial excitation as a function D(µ, τ ;n)
of the final coordinate µ and the time τ and verifying it
to obey the first-order partial differential equation

∂D

∂τ
=

∂

∂µ
(1− µ2)D . (5.17)

Obviously, that dynamics is devoid of quantum effects:
The propagatorD drifts along the characteristics of (5.17),
i.e. the fully classical trajectories (5.4)

D(µ, τ ;n) =
1− ν(µ, τ)2

1− µ2
D(ν(µ, τ), 0;n) , (5.18)

where ν(µ, τ) is the time reversed classical trajectory ob-
tained by solving (5.4) for ν. All quantum effects inherent
in the superradiant pulses then originate solely from an
effective initial distribution D(µ, 0;n) which we read from
(5.16) by there setting τ = 0,

D(µ, 0;n) =
2

J(1− µ2)(j − n)!

(
2J

1− µ

1 + µ

)j−n+1

× exp

(
−2J

1− µ

1 + µ

)
. (5.19)

We should emphasize that this effective initial distribu-
tion does not coincide with the true sharp initial form of
the propagator, simply because our asymptotic propaga-
tor (5.16) is not valid at small times. The essence of the
earlier theories of references [7–9] is thus recovered: Each
run of a superradiant decay of a highly excited atomic ini-
tial state produces a macroscopic, i.e. classical radiation
pulse originating from effectively random initial data, the
latter reflecting quantum fluctuations.

5.4 Time dependent expectation values

We shall here establish a master formula for the set of
“moments” defined as

Mks(τ ; l) = tr
[
ρ̂(j − l; τ)Js+J

k
z J

s
−

]
(5.20)

with nonnegative integers k, s, l and ρ̂(j− l; τ) the density
operator originating from the pure initial state |j, j − l〉. In
the case of j much greater than 1 and k, s, l much smaller
than j the average Mks(τ, l) can be written in the form of
an integral over the classical variable µ with the propaga-
tor JDm,j−l(τ) ≡ D(µ, ν, τ) as a weight,

Mks(τ ; l) = J2s+k

∫ 1

−1

D(µ, ν, τ)(1 − µ2)sµkdµ. (5.21)

Upon employing the propagator (5.16) pertinent to the
most highly excited initial states, changing the integration
variable to x [cf. (5.15)], and once more using the rescaled
time z from (5.15) we recover

Mks(τ ; l) =
J2s+k(4z)sez

l!

∫ ∞
0

xl+s(z − x)k

(z + x)2s+k
e−xdx ,

(5.22)

an asymptotic result found by rather different methods in
[9,10]. It has a scaling form inasmuch as Mks(τ ; l)J2s+k

depends on J and τ only through the single combination z.
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6 Passage time distribution

In the classical picture of superradiance the Bloch vector
starts its downward motion from a certain initial angle
Θ0 and crosses the latitude Θ at a strictly definite time
τclass(µ, ν) with ν = cosΘ0, µ = cosΘ. In other words,
the classical probability density of the times of crossing a
given coordinate µ on the way from the initial point ν is
given by the delta function δ(τ − τclass(µ, ν)) = δ(τ ′); the
quantum time shift τ ′ defined in (5.11) is strictly zero in
the classical limit.

Let us now introduce the quantum mechanical gen-
eralization of the classically sharp passage time distri-
bution. According to the master equation (2.6) for the
densities, the change of the probability for the system
to be in level m during the time interval dτ equals
(gm+1ρm+1 − gmρm) dτ . The quantity gmρm(τ)dτ is ob-
viously the probability for the atoms to go down from
level m to level m− 1 during the time interval [τ, τ + dτ ]
and

Pm(τ) = gmρm(τ) (6.1)

is the corresponding probability density for the time of
passage through level m. In particular, by stipulating the
atoms to have started from the pure state |jn〉 with n > m,
we specify the passage time distribution as proportional
to the propagator,

Pm(τ ;n) = gmDmn(τ). (6.2)

By simply integrating Ḋmn(τ) as given by the master
equation (2.6) one easily shows that our passage time dis-
tribution is properly normalized to unity,∫ ∞

0

Pm(τ ;n)dτ = 1. (6.3)

Our uniform approximation for the propagator allows to
easily and accurately calculate the passage time distri-
bution. In particular, if the initial state is not close to
the north pole, the function Pm(τ ;n) is just a somewhat
widened variant of the classical delta distribution, with a
width inversely proportional to the square root of the sec-
ond derivative JΦµµ at the maximum of the exponent in
the semiclassical approximation (5.1).

However, for the more interesting initial states of high-
est excitation, the passage time distribution has little in
common with its classical analogue. As follows from (5.14)
in the case of the initial state |j, j − l〉 with l� j we rather
get

Pm(τ ; j − l) =
2

l!

(
l +

1

2

)l+1

× exp

[
−2(l + 1)τ ′ −

(
l +

1

2

)
e−2τ ′

]
.

(6.4)

This density depends only on l and τ ′. It gives directly
the time distribution of the m → m − 1 transition with
respect to the classical time which corresponds to τ ′ = 0.

The absence of any explicit dependence on m and j
means that the time distributions of probability calcu-
lated for different values of these quantum numbers but
the same l = j − n differ only by a trivial time shift equal
to the change in the classical time τclass. In particular, the
standard deviation of the time of crossing the mth level,
∆τ =

√
< τ2 > − < τ >2 with

< τk >=

∫ ∞
0

τkPm(τ ; j − l)dτ , (6.5)

is a function of l only. The integrals (6.5) are easily cal-
culated and give the mean passage time and the standard
deviation as

< τ > = τclass +
1

2

[
C + ln

(
l +

1

2

)
−

l∑
k=1

1

k

]
,

∆τ =
1

2

(
π2

6
−

l∑
k=1

1

k2

)1/2

, (6.6)

where C = 0.5772156649 . . . is Euler’s constant; in the
case l = 0 the sums over k are absent.

When l becomes large compared with unity the dis-
tribution (6.4) becomes sharply peaked around the point
τ ′ = 0 predicted by the classical theory. However, as long
as l remains of order unity or even becomes zero as for
complete initial excitation the passage time distribution
is rather broad: The relative standard deviation ∆τ/〈τ〉
is of order 1/ ln j; the small initial quantum uncertainty of
the polarization sin θ ≈ θ ∝ 1/

√
j is found to be amplified

to macroscopic magnitude in the passage time.
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Appendix A: Uniform and semiclassical
approximations for the propagator
of coherences

The uniform approximation for the dissipative propaga-
tor of the non-diagonal elements (k 6= 0) is obtained via
the exact relation (3.6). In the semiclassical approxima-
tion Stirling’s formula is also applied in order to replace
Qm±k, Qn±k by smooth functions of macroscopic argu-
ments. We first note the uniform approximation for the
propagator of coherences

Dk
mn =

√
Qm−k,n−kQm+k,n+k

(l − 1)!

(
el

J2

)l
J3/2

√
l Ξ

× exp
{
J
[
τ(a2 − 1 + k2/J2)− σ(a, µ, ν)

]}∣∣
l=n−m+1

.

(A.1)
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The saddle-point parameter a and the functions σ,Ξ do
not depend on k and are determined in exactly the same
way as for the density propagator.

Finally, we note the semiclassical approximation ex-
tending (5.1) to the propagation of coherences. Since there
is an additional quantum number k whose range goes to
infinity when j →∞, a new macroscopic variable η = k/J
has to be introduced. It is notationally convenient to write
the previously incurred function σ(a, µ, ν) with the help
of a new auxiliary function

q(x, y) = (x+ y) ln(x+ y)− (x− y) ln(x− y) ; (A.2)

as σ(a, µ, ν) = q(a, ν) − q(a, µ). Thus equipped we can
present the propagator of the elements of the density ma-
trix with skewness k as

Dk
mn =

1√
[1− µ− η)2][1− (µ+ η)2]

√
2πJΞ

eJΦ
′

,

Φ′ ≡
1

2
[q(1, ν + η)− q(1, µ+ η) + q(1, ν − η)

−q(1, µ− η)]− σ(a, µ, ν) + τ(a2 − 1 + η2) .
(A.3)
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15. F. Haake, M. Żukowski, Phys. Rev. A 47, 2506 (1993).
16. M. Gutzwiller, Chaos in Classical and Quantum Mechanics

(Springer, N.Y., 1991).


